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Described is an electrical transmission line with resistive parameters as a model 
simulating the optical behaviour of chromatographic media as described by the 
KUBEI.KA AND MUNK equation. The model is characterised by its attenuation constant 
y, its characteristic impedance t, and the reflection coefficient Q. The significance of 
the latter is derived from Ohm’s Law, in order to make the treatment understandable 
to persons not possessing a background in electrical engineering. A concentrated 
parameter multi-section representation of the transmission line model is described 
covering the whole range over which the KUBDLKA ANI) MUNK equations are valid. 
In order to reduce the complexity of the model, the number of sections may be 
reduced making the simulation valid only for a restricted range of optical param.eters 
of the medium. 

(I) INTRODUCTION 

In two earlier paperslp” we discussed the quantitative evaluation of paper and 
thin-layer chromatograms by spectrophotometric methods mainly with regard to the 
limitations imposed by the optical “noise” upon the obtainable accuracy and sensi- 
tivity. The optical noise is caused by irregularities in the transmittance or reflectance 
of the background material of the chromatogram from one part to another. The 
discussion was partly based on the simplifying assumption that there is a linear 
dependence of the transmission decrement upon the concentration of the investigated 
substance. This assumption is justified, however, only for very low concentrations. 
In this paper we intend to investigate the relationship between the decrement in 
transmission or reflection and the concentration of analysed substance for the more 
general case, where neither linearity nor even logarithmically linear dependence can 
be assumed without considerable error. 

Paper and other thin-media supports used in chromatographic separations have 
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mostly a rather complex physical structure. As a consequence of this, their optical 
behaviour is too complicated to be described by simple mathematical relationships. 
l?or most practical purposes, however, simplified expressions may be used arid these 
give an adequate picture of the optical performance of the medium. One of these 
relations, which is extensively used in technical applications, is based upon a simplified 
theory proposed by KUBELXA AND MUNK” and is generally known as the KUBELKA 
AND MUNK set of equations. It relates to plane parallel isotropic heterogeneous media. 
The. assumption of isotropy is frequently valid only to a limited extent, so that 
measured results need not always completely agree with the values predicted by the 
theory. In most practical cases, however, these deviations are relatively insignificant, 
in which case the KUBELKA AND MUNK theory is perfectly adequate and represents a 
powerful. tool for the solution of many technical problems. The KUBELICA AND MUNK 
equation. can be solved in an easy a.nd straightforward manner. The solutions, how- 
ever, are rather difficult to interpret for practical purposes. Because of this, graphical 
representations* and simplified solutions valid only for a limited range of parameters 
of the mediums have been developed.: 

In another paper recently published0 one of us showed that under these 
conditions the optical behaviour of the medium may be simulated by an electrical 
transmission line composed of purely resistive elements. As shown in Fig. I, a trans- 
mission line of this type is characterised by a longitudinal resistivity R and a 
transversal conductivity G; Both are related to the optical parameters of the 
medium by the relations: 

R =zS+K (I) 
G K = 

In’ the equations K is the absorbance of the medium and S its coefficient of 
scattering. The electrical length of the model is assumed to be unity and the same 
applies to the thickness of the medium. 

Wheh the medium is illuminated by a light intensity I, part of the incident 
light 1s is reflected at the surface ‘. This component does not enter the medium at all 
and does not therefore convey any useful information about its interior. For the 
purposes envisaged here, this surface or specular reflectance may be disregarded. The 
amount of light reflected in this way has to be substracted from the total illuminating 
light flux. The remaining light enters the medium, which is assumed to be made up 
of homogeneous particles embedded in a heterogeneous environment. At every particle 
boundary scattering takes place, whilst inside the particles themselves part of the 
light is absorbed and converted to heat. No energy loss is produced by scattering. 
According to KUBELKA AND MUNK the result of this multiple scattering and ab- 
sorption may with good approximation be represented by splitting the entering light 
flux into two components, viz. one travelling in the forward direction and the other 
travelling in the reverse direction (Fig. 2). For technical purposes we are only inter- 
ested in these components at the surfaces, where they are entering or leaving the 
medium. 

It has been shown by POLLA@ that the forward light component j(x) and the 
backwards component Y(X) at a distance .2: from the near surface may be expressed 
by the voltage v(x) and current i(x) at the corresponding point in the transmission 
line model according to the following relations: 
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j(x) = &t-V(X) + i(x)] 

Y(X) = Q[V(X) - i(x)] (2) 

In order to obtain the corresponding values at the near (illuminated) surface, 
WC have to .put x = o, and for the far surface x = I. ZJ(O) and i(o) are then the input 
values of yoltage and current of the model, respectively, while ZJ(I) and 2’(x) are the 
respective output values. No optical back scattering of course takes place at the far 
end, so that Y(I) = o. From this we obtain : 

v(1) = z'(I) (3) 

It therefore follows that the load impedance CL of the model has to be equal to I. 

‘!---------~f--fYjj‘~, 
Fig. 1, Uasic diagram of a resistive liomogcneous tr&mission line. 

1 
P (1) =o 

iti> 

Fig. 2. Schematic diagram of light distribution at tlic surfiwxs 
meclium. I -1: Illuminating flux; 1s = surface rcflectccl flux; Y = 
.j - forward travclling flux. 

of a plant parallel scat&zing 
diffusely rcflectccl component : 

The transmittance of the medium (A 71) is defined as the ratio of the light 
intensityj(1) leaving the far end of the medium and the incident light I(o). Applying 
eqns. 2 and 3 we obtain: 

i(I) A y = - = 41) -I- i(I) 2w 
i(o) v(o) -I- i(0) ,= o(0) + i(o) 

In an analogous way we obtain for reflectance (A 12) : 

fw A[{=---...-= ‘o(o) - i(o) 

i(o) 7J(o) + i(0) 

(4) 

(5) 
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(2) THE INPUT-OUTPUT REPRESENTATION 

A transmission line can be considered as a special case of a three-terminal 
electrical network. The response of such a network to an applied electrical signal is 
completely specified by a set of input-output parameters without knowing its inter- 
nal set-up. The network itself may then be considered as a black box with unknown 
content. 

For a transmission line the most convenient set of parameters specifying the 
input-output behaviour of the network is : the characteristic impedance co, the propa- 
gation constant y and the reflection coefficient e. to and y can be expressed in terms 
of the electrical parameters of the line; in our case, where the line is homogeneous 
and purely resistive, these reduce to the total longitudinal resistance A and trans- 
versal conductance G. It may’ easily be shown that 

co is defined as the impedance of a line of infinite length. Another, but equiva- 
lent, definition states that co is the impedance seen at the one end of a line of finite 
length if this is terminated at the other end by an impedance equal to co. The line is 
then said to be matched. y is the logarithm of the ratio of output to input voltage 
under matched conditions. On a resistive line y determines only the amplitude re- 
lations, that is the attenuation of the line. In the general case it would also specify 
its phase properties. 

The coefficient of reflection Q is determined by the characteristic impedance Co 
and the load impedance (‘L, Under matched conditions Q = o and no reflection occurs. 
As is evident from eqn. 3 the load impedance in our case is equal to I. 

(CL = 1) (8) 

The meaning of the reflection coefficient e is best understood and eqn. 8 verified 
from the simple diagram in Fig. 3. 

Fig. 3. Explanation of the reflection codficient. T = n&work cquivnlcttt to the lint with attcttun- 
tion; I;(; = generator itnpcclancc: SL - load itnpcclnttce. 

The characteristic impedance co is by definition the impedance seen at the input, 
if the network is terminated by ca. Since the network considered here is bidirectional, 
the impedance seen at any terminal equals co, if the other one is terminated by an 
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impedance equal to CO. Let us now assume that co = CT, = co. Under these conditions 
we have evidently V(O)M = 23,/z and EM = v(o) *e-Y, the index n/r indicating the 
matched condition. 

Let us now consider a mismatch at the load terminal with CL # co. Looking 
to the left into the network from the load terminals we see all the time the impedance 
CO, since the generator terminal is still matched. Putting for the moment y = o, the 
whole diagram reduces to a simple voltage divider, the output voltage becoming 

(9) 

This voltage can be considered as the sum of a forward component equal to 
v(I)M and a reflected component v(I)R travelling in the backward direction. 

Now let us consider the effect of attenuation. For V(I) we obtain evidently: 

E,, 
7J(I) = --g- * c-7’ (I + &J) w 

The situation is more involved at the input. For y - o we evidently have 
V(O) = ZJ(I). With y # o, V(O) is again the sum of the forward component ej(o)ng and 
tlie component reflected at the load terminal. Travelling back to the input, the latter 
is attenuated by a factor e--Y, This results in 

Similar reasoning applies to the current values. They too may be considered 
as the sum of a forward and a reflected component. For the matched case we have: 

I 
i(O = E" - 

2co 

I 
.i( r)n, = E,, a- 

G, 

'e-Y 03) 

In the general case we obtain: 

i(T) 
w 

= i(I) + i(I)n = - = 
I&, 

CL G, 
’ e--y (I - 0) (I-1) 

i(o) = z’(o)nf + i(o)R = - 0 * e-2:‘) (IS> 

It should be noted that in the model all reflection takes place at the load 
terminals, whilst in the optical medium reflection occurs throughout the medium. 

It may also he worth mentioning that the relations above are usually derived 
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in a straightforward way from the differential equations of the general transmission 
line problem. It is felt, however, that the approach chosen here is more illustrative 
for the reader, who is not familiar with electrical transmission line theory. It should 
be .kept in mind that the forward component and the reflected wave are not mere 
mathematical fictions, but real entities. In most cases they are accessible to direct 
measurements, though this does not apply to the purely resistive line, which re- 
presents a degenerate condition. 

(3) RISFLBCTANCEANDTRANSMITTANCE IN TERMSOFLINE PARAMETERS 

Following the brief comments above it now remains to express eqns. 4 and 3 in 
terms of the parameters which were just introduced. First we wish to define the 
limiting values which t,, may assume. From eqn. 6 it follows that 

I<&<= (16) 

Remembering that in our case <r~ = I, we obtain for Q : 

-I<@<0 (17) 

Further we can write 

v(0) + i(o) E= -E$ {I -t- + +c-em2y I -- 
0 ( ;, )> 

= 2 (I + C,,) (I - ~~*e--~v) 

= s (I + &,)*Q (e-2y-I) 

Ayt z 
V(I) + i(I) e--y (I -i_ @) 2c, e--Y (I - e2) 

~(0) + z'(o) = I - $*e-+ ’ 1 + co = I - $.e-2Y 

Art = 
44 - i(0) I - e-W 

v(0) +i(o) = --,O 1 -@.e--27 

W) 

(IS) 

(20) 

(21) 

Eqns. 20 and 21 are very general. For many cases of practical interest, however, 
they can be considerably simplified, as will be shown in a future publication*. 

(4) IMPLEMENTATION OFTHE MODEL 

The implementation of a model of a general transmission line, the electrical 
parameters of which should be variable and distributed over the whole physical 
length of the line, is rather difficult. In order to build a model with purely resistive 
parameters, sheets of resistive material, semiconductive plastics or thin- or thick- 
film technics may be used: the problem therefore becomes somewhat easier. Even for 
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this case, however, it appears that a model with lumped parameters is preferable; 
this means a model in which the electrical parameters, normally distributed over the 
length of the line, are concentrated in the form of resistors etc. A model of this type, 
however, can only approximate the real case with distributed values. 

The most common representation of a transmission line by a lumped parameter 
network is a so-called T or 17 ladder configuration. A T-equivalent is shown in Fig. 4. 
The branch impedances are here of course again pure resistances. In first order 
approximation they may be chosen equal to the series and shunt impedance of the 
line. The error committed in this way in the characteristic impedance and the propa- 
gation constant of the model as compared to the line is approximatelyD: 

y” = ,/+ 

2 
= yorr (I + $$) (22) 

The index T refers to the corresponding characteristic value of the T-approxi- 
mation. A IT-network using the same values results in errors of approximately the 
same size but of opposite sign. 

Fig. 4. Lumped T-approximation to a transmission lint. c = ri == 2s + I\‘; i& = I/G = 1/A-; 

cr. = J. 

For larger values of yO the error becomes rather significant. To reduce it, 
corrections may be applied to the values of cr and c2, which are illustrated in eqn. 23. 

Cl = CO ;;I ; : 

co2 - y 

ca= c, (23) 
I 

For the purposes envisaged in this application these corrections do not result in 
a convenient procedure of implementing the model; a better way of reducing the 
deviations of the model from the continuous line is to build the model from individual 
sections each representing a relatively short length of the line. The number of sections 
12 should be chosen so that, depending upon the permissible overall error in y, the 
propagation constant of the individual sections ys is < 0.5. For the parameters of the 
individual section we then obtain the relations: 



26 V. I’OLLAIC, A. A. BOULTON 

The error in characteristic impedance of the model is then determined by the 
value of ,ye’ according to eqn. 22. The error in propagation constant is determined, 
however, by the sum of the errors of the individual sections. For this reason n has to 
be chosen larger than at first might appear from eqn. 22. The schematic diagram of 
such a multisection model is shown in Fig. 5. 

Fig. 5. A multisection trnnsmission lint model. 

For our purposes the variable AK in the model should be represented both in 
the series and the shunt arms of the model according to Figs. 4 and 5 by independent 
variable resistances (see Fig. 6). 

(a) 
2 S+K 

(b) Pt 

Fig. 6, The rcpresen’tation of the incrcmcnt in absorption in the moclcl. 

AK is of course the increment in absorption due to the chromogen on the 
cbromatogram. The elements marked with a ---I are to be set at the beginning of the 
measurement according to the optical parameters of the medium itself. The pro- 
cedures for determining them will be described in a following papers. 

Elements of the same type in all the sections should be mechanically coupled 
together so that a common control element may be used for adjustment. 

Elements marked with an arrow -+ (representing AK) are to be adjusted 
during, the, measurement so that the values read on the model agree with the optical 
results obtained (see Section 6). The value of AK, corresponding to a given change 
in transmittance or reflectance, is read on a common dial. If required, automatic 
setting by a servo-follower system is feasible. 

(5) MODELS WITH A SMALL NUMBER OF SECTIONS 
P 

The number of sections required in a model of this type to simulate the optical 
transmission of media with high optical density becomes very large. For example, when 
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simulating a medium with optical density 3.4 (Whatman No. 3 paper), y becomes of 
the order of 6 to 8. To keep the error small, the value of y6 per section has to be small 
also. Assuming a value of y = 0.25 per section, then 25 to 30 sections are required. 
Though models of this size are technologically perfectly feasible, the large number of 
variable elements ganged together makes them cumbersome and costly. The difficul- 
ties increase if automatic and high-speed adjustment of the model is required. This 
would be the case, for example, if the model were to be incorporated into a scanning 
photodensitometer, in order to Provide for a linear dependence of the output signal 
upon 4K. In such a case digital modelling of eqns. 13 and 14 would seem to be the 
method of choice. On- or off-line digital modelling may be performed on almost any 
type of digital computer. On-line modelling, however, would require much computer 
time and in most cases this would be considered excessive. Digital modelling requires 
that the output data of the photodensitometer or reflectometer be available in digital 
form. Very few of the currently available instruments are so equipped and only a few 
laboratories possess the necessary accessories for digital conversion and storage of the 
analogue signal. This is one of the reasons why the experimental photodensitometer 
now being developed in our laboratories will be equipped with both a digital and an 
analogue output. 

For media of medium and low optical density, perhaps up to a y value of 3.2 
(that is approx. 1.4 in decimal units) a multisection transmission line model of the 
type described seems to be quite adequate. Assuming eight sections with a transfer 
constant ye N 0.4 per section, the overall error in y is below SO/~, The error in Co is 
about 2% ; this means, that the error in Q may be neglected. 

It should be noted that the optical density of the medium is not exclusively 
determined by e-7, but contains also a term dependent upon the reflection coefficient 
Q. In a medium with high scattering power such as paper, I - e2 becomes small and 
this term may then contribute up to about one optical density unit to the density of 
the medium. This means that for media of this type the model described may be 
adequate up to an optical density value of approximately 2.5 decimal units. For 
reflectance measurements the value of e alone is all important if y exceeds the value 
of approximately 2.5 (see eqn. 21). Because of this we may conclude that a model 
with about eight sections is adequate for simulating the reflectance of a medium with 
any optical density, since .Q is represented with satisfactory accuracy. 

For high-speed on-line analog simulation of the effect of changes in absorbance 
of the medium, electronic techniques for adjusting dK and I/AK have to be em- 
ployed. For a limited number of sections this approach need not be too costly, since 
relatively inexpensive switching modules in integrated design are now available. To 
adjust the transversal impedance I/AI<, one end of which is grounded, a simple count- 
ing circuit can be used. More difficulties are encountered with the longitudinal im- 
pedance AK, which is floating. A transistor operated reed relay arrangement probably 
represents the simplest solution. This should allow for speeds of adjustment of the 
order of milliseconds, and for most practical purposes this ought to be sufficient. 

There are several special cases, however, quite frequently encountered in 
practice, where relatively simple special purpose circuits may be employed. An im- 
portant application, which has already been mentioned, is the linearisation of the 
output of reflectometers and densitometers. If we are content with a limited range of 
applicability, these circuits are simpler and less expensive than digital instrumen- 
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tation. These aspects will be described in detail in another paper to be published soon. 

(6) THE MEASUREMENT OF TRANSMITTANCE OR REFLECTANCE ON THE ELECTRICAL 

MODEL 

To measure the transmittance or reflectance of a certain medium using the 
model, we have first to set the basic model parameters to the corresponding optical 
values S and K of the blank medium. How these are to be determined will be described 
in a later publication. The elements to be set in this way at the beginning of the 
measurement are marked in the figures by --+ . The variable elements representing 
an increment in absorbance AK are marked by --f, and these are to be set in the 
zero position. 

The actual measurement is done in accordance with the definitions set out in 
the right-hand’part of eqns. 4 and 5. To simplify the procedure, U(O) + i(o) is kept 
constant at a value E. 

zJ(0) -I_ i(o) -1 = E 

i(I) AT=---= 41) + i(I) = =J(I) 

i(o) v(o) -I- i(o) E 

r(o) An=-= 40) - i(o) v(o) - i(o) 

i(o) v(0) + i(o) = E 
(25) 

To measure these values, the arrangement shown in Fig. 7 may be used. The 
transmission line model is here shown just as a black box M. 

Fig. 7. Block diagram of the procedure for measuring A T ancl An. SA = summing amplifier: 
M = transmission line model: SW = transmission-reflection mcasurcment switch. 

The circuit operates in the following way: first the variable parameters of the 
model have to be adjusted to the required values. Then with switch SW in position I 
the potentiometer R, is adjusted to give the reading I unit at. meter V,. This sets in 
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eqn. 25 E = I; meter V, immediately reads the value of AT/~. For measuring AR 
switch SW is now brought into position 2. Meter V, then indicates the value of AR 
under investigation. The gain of the summing amplifier SA also of course has to be 
considered in the calibration of the instruments; it is here assumed to be unity. 

An actual fact of much more importance is the inverse procedure. Here the 
elements of the model marked with --_I (see Fig. 6) are set to represent the basic 
optical parameters of the medium. The elements modelling AK (marked -+) (see 
Fig. 6) are then varied, until the change in transmittance or reflectance measured on 
the medium is reproduced on the model. The corresponding 
on the calibrated dial for these elements. 

value of n I< is then read 

(7) CONCLUSIONS AND EXTENSIONS 

It is hoped that the modelling approach described in this paper will represent 
a helpful and convenient procedure for solving, in terms of incremental absorbance, 
the transfer equations of a class of optical media for which the KUBIILKA AND MUNK 

theory is valid. By replacing the resistances of the model by complex valued im- 

pedances, wavelength dependences ofthe optical parameters may to a certain extent 

be considered, A further possible extension of the method could be two- and three- 

dimensional models usingsemiconductivesurface andvolume conductors. In this way 
it might be possible to consider a certain degree of anisotropy of the medium. In 

general the application of the highly developed theory of homogeneous and non- 

homogeneous electrical transmission lines may become a helpful tool for the treat- 

ment of more complex and involved optical situations. 
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